博客
关于我
算法——172、阶乘后的零(力扣)
阅读量:639 次
发布时间:2019-03-14

本文共 1253 字,大约阅读时间需要 4 分钟。

good代码是很重要的,特别是在编写代码时要非常小心,避免任何可能导致代码失败的错误。在这段代码中,你将逐次将数字从n递减到1,并将这些数字相乘,记录中间过程中的多余零的数量。

class Solution {
public:
int trailingZeroes(int n) {
int sum = 1, target = 0;
while (n >= 1) {
sum *= n;
--n;
while (sum % 10 == 0) {
sum /= 10;
++target;
}
sum %= 10000;
}
return target;
}
};

这段代码通过在每个步骤中计算中间结果,并不断将末尾的零去掉,最终保留了最后的结果。这显示了如何在递减过程中分解问题,虽然这种方法在计算阶乘的末尾零时比较繁琐,但是它确实能达到预期的目标。

阶乘末尾零的普遍方法

为了更有效地计算阶乘末尾零的数量,可以利用因数分解的方法。这个方法的核心思想是计算数中包含5的因子数目,因为每对2和5都会在阶乘的结果中生成一个零。通过统计5的因子数量,我们可以根据这个数目来确定末尾有多少个零。

代码解释

public:
int trailingZeroes(int n) {
int sum = 0;
for (int i = 1; i <= n; ++i) {
if (i % 5 == 0) {
int j = i;
do {
++sum;
j /= 5;
} while (j % 5 == 0);
}
}
return sum;
}
};

这个代码通过遍历从1到n的每个数字,检查是否能被5整除。如果能,它就不断地除以5,直到它不再能被5整除为止。每一次除以5的过程都会增加计数器sum,从而记录下该数的5因子的数量。通过统计所有数字中包含5因子的数目,我们可以确定阶乘的末尾有多少个零。

请注意,这种方法是唯一的优化方法,因为它避免了在计算过程中处理过大的数,直接转移了计算焦点,确保了算法的高效性。这种方法不仅简化了问题,而且提升了性能,在计算n很大的情况下特别有效。

通过这两种不同的方法,你可以根据具体需求来选择最合适的解决方案。在实际应用中,第二种方法在计算阶乘末尾零的数量时更加高效和准确,因此它被广泛应用于各种数学计算中。

转载地址:http://cfeoz.baihongyu.com/

你可能感兴趣的文章
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
NISP国家信息安全水平考试,收藏这一篇就够了
查看>>
NIS服务器的配置过程
查看>>
Nitrux 3.8 发布!性能全面提升,带来非凡体验
查看>>
NiuShop开源商城系统 SQL注入漏洞复现
查看>>
NI笔试——大数加法
查看>>
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>